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GEOMETRIC CHARACTERISTICS

OF FRACTURE-ASSOCIATED SPACE

AND CRACK PROPAGATION IN A MATERIAL

UDC 539.3+531.391.5+539.219.2I. A. Miklashevich

It is shown that fracture can be treated as a process occurring in the Finsler space. The use of the
Finsler space allows one to construct a delaminated manifold whose characteristics are related to
the defect structure of the medium. A method of determining the fractal dimension of fracture is
developed using the concept of crack propagation along geodesics.
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1. Geometric Representations in the Fracture Theory. Processes occurring in the vicinity of a
propagating crack are a complex combination of the processes of elastic and plastic deformation of the material
and accumulation of microscopic cracks, which lead to the formation of a macrocrack. The interaction of the stress
field of the propagating crack with the internal-stress field of the basic material and defect field (e.g., dislocations,
disclinations, and point defects) is difficult to describe because of the complexity of the physical processes and
mathematical apparatus that adequately governs these processes.

In most studies dealing with prediction of crack propagation, the “global” crack propagation and “global”
trajectories are considered; however, this averaging approach does not allow one to introduce fractal characteristics,
which are local in nature. The “local” approach to determining the crack trajectory can be developed using the
variational principle [1].

The stress fields used to calculate the trajectories in the “local” approach of the theory of cracks should be
determined on the basis of the microstructure of a material to fail. In principle, this is possible in the continual
theory of dislocations. The basic idea of the continual theory developed by B. A. Bilby, E. Kröner, A. M. Kosevich,
and I. A. Kunin is to find a relation between defects inherent in a real solid and geometry (metric properties) of the
medium. The geometric approach adequately describes the imperfection of crystals. However, the relation between
the metric properties of the medium and the processes of plastic deformation and fracture (crack propagation) is
not yet clearly understood.

In the present paper, the effect of the metric properties of the medium (metric tensor) on the crack trajectory
is studied. The fractality of the fracture process (crack propagation) is related to the specific geometric features of
the space whose properties depend on the structure of the failing material.

2. Trajectory of a Crack. Using the optical-mechanical analogy, Miklashevich and Chigarev [2, 3] derived
the following crack-trajectory variational equation for the simplest crack model of the Barenblatt–Dugdale type:
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Here σij are the stresses at the crack edges, ni is the direction cosine of the external normal to the crack surface,
and uj is the displacement of the crack edges. Equation (1) is obtained for an ideal medium without allowance
for the real microstructure of the material. Self-consistency of Eq. (1) [propagation of the crack at the (i − 1)th
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step affects the direction of its growth at the ith step] necessary to describe the fracture surface [4] is ensured by
step-by-step varyation of the fracture energy in the near vicinity of the crack. We introduce the notation

f1(x, y) =
∂ lnQ(x, y)

∂x
, f2(x, y) =

∂ lnQ(x, y)
∂y

and write Eq. (1) as [3]

y′′ − y′f1(x, y)(1 + y′2) + f2(x, y)(1 + y′2)2 = 0. (2)

Since Eqs. (1) and (2) are derived from the variational principle, they are equations of geodesics of the fracture-
energy release and are determined in the Euclidean space. This agrees with the well-known statement that real cracks
propagate along geodesics [5]. In Eq. (2), the expression 1 + y′2 is the arc-length element for the two-dimensional
Euclidean space. The use of the Euclidean metric allows one to obtain realistic equations of the trajectories in a
few cases [1, 6] for ideal materials. For real media with a microstructure (defects), Eq. (1) should be generalized
to wider subspace classes. The reason is that, for media with an internal structure, the processes occurring in
the vicinity of the crack tip are very complex and cannot be described as a direct sum of operators of plastic and
elastic deformation [7]. To take into account the defect structure of a material, it is necessary to introduce all
three nonzero Kartan curvature tensors [8–10]; therefore, the space whose properties depend on the structure of the
failing material should have a more general character compared to the Euclidean and Riemannian spaces [10–12].

Generalized spaces can be constructed in two ways [12, 13]: 1) introduction of the metric tensor (or metric
function) into the manifold; 2) introduction of the connectivity coefficients into the manifold. In studying the fracture
processes, the second way is preferable because here the defect structure determines the geometric structure of the
space. For the Riemannian space, it is impossible to introduce the metric and connectivity independently since the
connectivity coefficients of the Riemannian space are uniquely related to the metric [12]:

Γkij =
1
2
gkl
(∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
. (3)

At the same time, the general affine geometries allows one to consider the connectivity deformations necessary for
obtaining the complete set of nontrivial affine-metric characteristics in accordance with chosen internal invariants
of strain and fracture [13]. In constructing the set of determining parameters (and corresponding connectivity
deformations), it should be borne in mind that an adequate description of crack-propagation dynamics requires
introduction of velocities as independent parameters into the governing equations of the process [7, 14].

We consider the question of determining the crack trajectory with allowance for the real structure of the
material. In the case of an arbitrary generalized space, the equation of a geodesic can be written as a function of
the arc length s of the curve, current coordinates xµ, and connectivity coefficients of the space Γµiλ:

d2xµ

ds2
+ Γµσλ

dxµ

ds

dxλ

ds
= 0. (4)

Determination of the crack trajectory reduces to determination of the connectivity coefficients of the generalized
space.

3. Geometric Characteristics of Solids with Defects. In studying defects in the general form, corre-
spondence between a solid body (continuum) and a certain manifold Mn is established. Depending on interpretation
of defect characteristics, the manifold can be of one or another geometric character ranging from theories of limited
application (in which the curvature tensor is Rlij,k = 0) to metric affine-connected manifolds of general form [9].
(Below, the unit vectors of the space are denoted by Latin subscripts.) For an arbitrary manifold Mn, the Finsler
space [15] is one of the simplest generalized spaces whose metric admits the existence of all three nonzero curvature
tensors and which is used to describe media with a microstructure. We choose this space since, for this space, the
Hamilton function of the system H(x, y) and the metric function F (x, ẋ) are related by the standard canonical
equations

∂F (x, ẋ)
∂xi

= −∂H(x, y)
∂xi

, (5)

where ẋ = dxi/dt and xi, ẋi, and yi are independent variables. Introduction of velocities as independent variables
makes it possible to study the dynamic processes without additional assumptions. We also introduce the notation
f(xi, xj , . . .) = f(x).
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Since the Hamiltonian has the character of the bearing surface for the indicatrix, the functions H and F are
dual functions, the metric function F (x, ẋ) is the Lagrangian of the system [7, 15], and Eqs. (5) are the standard
Hamilton–Jacobi equations. Spaces of this type are also used to model plastic deformation.

Introduction of a metric function of the form F (x, ẋ) determines a delaminated manifold in which ẋi define
the linear vector space Tn tangent to the basic manifold Mn and are contravariant vectors of the space Tn. In this
case, the tangency point is a point of the manifold P (xi). For the Finsler space, we introduce the metric tensor

gij(x, ẋ) =
∂2F 2(x, ẋ)
∂ẋi∂ẋj

. (6)

For each arbitrary contravariant vector ẋi ∈ Tn, one can find the covariant vector yi of the dual tangent space:

yi = gij(x, ẋ)ẋj . (7)

The Riemannian space is a particular case of the Finsler space, for which gij 6= gij(ẋi), i.e., the metric tensor is
direction-independent. Using metric (6), one can formulate analogs of the known geometry theorems and Rieman-
nian geometry [15]. For the Riemannian space, the tangent space is the Euclidean space, and the Riemannian space
can be considered as a locally Euclidean space. Locally, the Finsler space is the Minkowski space.

4. Effect of the Defect Structure on Crack Propagation. It is well known that processes of elastic
deformation in an ideal crystal can be geometrically interpreted as processes in the Riemannian space with a
direction-independent metric. In this metric, the elementary length can be written as

dl(r) =

√
g

(r)
ij

dxi(r)

dt

dxj(r)

dt
.

Here, the superscript r at the metric tensor gij denotes the Riemannian space, xi and xj are the current coordinates
of the point, and t is the natural parameter of the curve; the indices run from 0 to n (n is the dimension of the
space considered in the problem). In analyzing the propagation of a crack, the crack length is usually used as the
natural parameter.

4.1. Effect of the Microstructure on the Metric Properties of a Continuum. Since each type of defects
is characterized by an additional geometric parameter of the space, for example, curvature S, torsion R, and
segmentary curvature K (the first, second, and third Kartan curvature tensors), in the case of a medium with
a microstructure, the metric depends not only on the position of the cocurrent coordinate system (macroscopic
state) but also on the vector field associated with defects (microscopic state). In this case, the microstructure
(distribution and nature of defects) is generally independent of the macroscopic state, i.e., generation and evolution
of these states can occur in independent ways. For example, point defects can result from irradiation, which leaves
the strain state almost unchanged. Moreover, as was mentioned above, the physical meaning of the problem implies
that the geometric properties depend also on the direction in this space, determining characteristics of the space,
and their velocities [4, 11]. Therefore, in the general case, we have gij = gij(S,R,K, xj , ẋj), which allows one to
determine the metric tensor for the Finsler space as a function of connectivity coefficients from the differential
equation (∂Γ∗ik.l

∂xt
− ∂Γ∗ik.l

∂ẋs
∂Gs

∂ẋt
+ Γ∗iq.tΓ

∗q
k.l

)
= gij

(∂Γ∗kjl
∂xt

−
∂Γ∗kjl
∂ẋs

∂Gs

∂ẋt
− Γ∗qj.tΓ

∗
kql

)
. (8)

Here Γ∗kjl = Γ∗kjl(S,R,K, x
i, ẋi) are the symmetric connectivity coefficients of the Finsler space (which differ from

the connectivity coefficients of the Riemannian space in the general case). In view of their cumbersome expressions,
the connectivity coefficients are not given here. We consider the main properties of the dependence of the metric
function on the velocity of determining parameters. In Eq. (8), the quantityGi describes nonmetricity of connectivity
and arises owing to the fact that the Finsler metric depends not only on the position of the cocurrent coordinate
system but also on the additional vector field ξl (field associated with defects). This quantity can be found from the
equations for the field derivatives [15] or obtained from the introduced connectivity deformation [13]. It is worth
noting that, in the general case, Gi does not depend on the metric tensor, which ensures the influence of material
imperfections on the fracture processes regardless of the geometry. Thus,

Γik.j ẋ
k =

∂Gi

∂ẋj
, Γ∗ik.j = Γik.j − Cik.hΓhr.j ẋ

r.

Here Cik.j is the characteristic tensor of the Finsler geometry, related to the variation of the metric tensor along the
chosen directions (Kartan torsion tensor [7]). The presence of torsion in the Finsler connectivity is due to the effect
of the defect structure on the ideal continuum:
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Ckji(x, ẋ) =
1
2
∂gij
∂ẋk

=
1
4
∂3F 2(x, ẋ)
∂ẋk∂ẋj∂ẋi

. (9)

Raising and lowering of indices is performed using the metric tensor determined by Eq. (6). It should be noted that
the torsion [tensor (9)] can be specified in different ways. In some cases, the first Kartan curvature tensor [13]

Sji.kl = Ajk.rA
r
i.l −A

j
r.lA

r
i.k,

where Aji.k = F (x, ẋ)Cji.k, is used. Since the length is measured in the real Euclidean space, the “excess” variables
of the Finsler space are latent parameters, and their projection onto the tangent Euclidean space determines the
fractal character of the surface. This corresponds to introduction of three curvature tensors as additional parameters
of solid mechanics [8, 11].

We note that, in the affine-connectivity space, our interest is with geodesics and, hence, we can consider the
torsion-free Finsler space as a crack-propagation space. The reason is that the connectivity object Γµσλ determines
the same geodesic in this manifold as the torsion-free connectivity object Γ̃µσλ obtained by its symmetrization.
Therefore, we can confine our attention to the one-shape Finsler spaces with the Bervald–Moor metric. For these
spaces, the metric is constructed on the basis of an arbitrary Minkowski metric. In this case, the metric tensor of
the space has the form

gij(xm, ẋm) = SAmS
B
i gAB(ẋD(xm, ẋm)),

where SAm is the global reference field of the C3 class, and the starting metric of the Minkowski space

gAB =
1
2

∂2F 2
M

∂ẋA∂ẋB

depends on x only through ẋD.
4.2. Crack Trajectory in a Medium with Microdefects. In 1966, R. Atkinson studied the crack-dislocation

interaction in two-dimensional formulation using the classical theory of anisotropic media. Atkinson’s solution
was based on determining the interaction forces between the dislocation and its image, which appears at the free
surface of the crack. Later, B. A. Bilby, A. H. Cottrell, and K. H. Swinden improved this theory by taking into
account dislocation-field screening. The principal difficulty in using both the Bilby–Cottrell–Swinden theory and
the classical theory of cracks is the presence of singular solutions in the dislocation core and crack tip, which does
not allow one to use the theory of elasticity. Despite the series of generalizations in which the singularity problem
was solved, the correctness of these solutions is doubtful. These solutions contradict the experimentally established
fact that there are no defects in the neighborhood of the free surface of a crack [16, 17]. Inasmuch as defects are
absent on the surface, the object that produces images is also absent.

This contradiction calls for the development of new approaches to study the crack-defect interaction, based,
for example, on the Lagrangian formalism of the continual theory of defects [18]. The geometric theory of the crack-
defect interaction also holds much promise [19]. The reason is that, from the physical viewpoint, the variational
problem of crack propagation (determination of the optimal crack-propagation trajectory) can be considered as the
formation and disappearance of virtual free surfaces in the bulk of the material. The energy of these processes is
determined by the metric properties of the continuum in the region where the virtual surfaces are formed. Since
the energy, like other invariant factors, depends on the defect structure, the metric properties (6) are functions of
the defect structure and the geometric parameters are functions of the energy related to the defect structure [7].

Since the defect structure is determined locally, the Finsler space is decomposed into two three-dimensional
Euclidean spaces

BA = B ×M ⊂ E3 × E3,

where B is the object (body) considered and M is the microstructure in the reference configuration; the multiplica-
tion sign denotes the Cartesian product of the spaces. This representation corresponds to the well-known description
of bodies with microstructures by means of the Cosserat media (position and director vectors). This decomposition
is attributed to the fact that the action of the defect field occurs in the tangential space, whereas the action of
the macrostructure occurs in the Euclidean space related kinematically to the initial undeformed structure. In this
case, the metric function F (x, ẋ) can be written as F (x, y) (x = xi are the macroscopic coordinates of the point
and x = yi are the microscopic coordinates). The metric tensor (6) has the form

gij(x, y) =
∂2H2(x, y)
∂yi∂yj

. (10)
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Fig. 1. Region of plastic deformation in the vicinity of the crack tip:
plastic-flow zone (1), slip band (2), and crack (3).

As in spaces with the Bervald–Moor metric, the metric tensor depends on x through y only. Moreover, it can be
assumed that the geometric characteristics of these spaces in the neighborhood of the tangency point are small.

We consider propagation of a crack in a medium. We take into account the relation between crack propagation
and evolution of the defect structure and ignore other processes of energy dissipation. In the simplest case, it is
sufficient to consider the development of defects in the region of plastic deformation caused by crack growth. It is
known that, as the crack propagates, plastic deformation occurs in the vicinity of the crack tip and in the region
of plastic-shear localization (slip bands, etc.) (see Fig. 1). In the two-dimensional case, the region of deformations
initiated by the crack can be regarded as superposition of a circular region of radius r whose center lies at the crack
tip and rectilinear segments of slip bands. It is worth noting that the exact shape of the plastic-deformation zone is
of no importance for the algorithm proposed. Since the space is decomposed into vertical and horizontal subspaces,
the total energy concentrated in the dislocation field is a function of microscopic coordinates and is located in the
tangent space. This means that, at this point of the continuum, the crack “feels” only a certain part of the defect
field of the material, which plays an important role in energy variation (precisely this variation is responsible for
the crack-growth direction). We assume that E ∼ exp (−µ

√
y2

1 + y2
2 ). At the same time, the energy should be a

function of macroscopic coordinates. The reason is that the “distance” between the point of the basic and tangent
spaces is a function of their radius vectors; determination of this “distance” is a separate problem. We assume
that, for a circular region, the dislocation-distribution function depends on macroscopic parameters (coordinates x1

and x2) and is uniform inside the region of radius r; outside this region, the influence of the defect field decreases
exponentially. We introduce the notation q = r2− ((x1)2 + (x2)2). The macroscopic dependence can be written as

n1(x, y) = n01{θ(q) + θ(−q) exp [−λ1((x1)2 + (x2)2)]}, (11)

where the characteristic of the medium λ1 > 0 is a coefficient that takes into account the defect-continuum interac-
tion (for example, deceleration forces and processes of generation and annihilation of defects) and θ is the Heaviside
function. With allowance for Eq. (11), the total energy concentrated in the defects of the circular region with the
macroscopic coordinates x1 and x2 can be written as

E1 = E0

∫
n1(x, y) exp (−µ

√
y2

1 + y2
2 ) dS. (12)

Here E0 is the elastic energy of unit dislocation, dS is the element of the tangent-space area, which is a region where
the defect distribution affects the energy of defects at the given tangency point of the spaces. Since the material is
heterogeneous in the general case, we consider an elliptic elementary area with semiaxes a and b whose orientation
depends on the heterogeneity. In this case, it follows from Eq. (12) that

E1 = E0πab exp (−µ
√
y2

1 + y2
2 ){θ(q) + θ(−q) exp [−λ1((x1)2 + (x2)2)]}. (13)

We consider an infinitely thin slip band. Starting from similar reasoning, we assume that the density of defects in
the band has the form

n2(x, y) = n02δ(±kx1 −B − x2) exp [−λ2((x1)2 + (x2)2)]

= n02δ(±t− x2) exp [−λ2((x1)2 + (x2)2) ], (14)
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where n02 is the initial density of the defect distribution in the slip band, δ is the Dirac delta function, k = tan α

(α is the slope angle of the slip band), B is the coordinate of the slip-band origin, and λ2 > 0. The plus and minus
signs in the argument of the delta function refer to the slip bands in the upper and lower halfplanes, respectively. We
denote the radius-vector of microstates by ρ2 = y2

1 + y2
2 and the radius-vector of macrostates by ρ̃2 = (x1)2 + (x2)2.

Assuming that interactions in the tangent space are the same for the circular region and band, with allowance for
(13) and (14), we obtain the total energy

E = E1 + E2 = πa2b2 e−µρ[θ(r2 − ρ̃2) + θ(ρ̃2 − r2) e−λ1ρ̃ + δ(±kx1 + b− x2) e−λ2ρ̃]. (15)

Since a = a(y1, y2) and b = b(y1, y2), we can calculate the components of the metric tensor of the Finsler space gij

using (10) and (15). In view of cumbersome expressions obtained, we give only the component g11:

g11 =
[( ∂a
∂y1

)2

b2 +
( ∂b
∂y1

)2

a2 + ab
(
b
∂2a

∂y2
1

+ a
∂2b

∂y2
1

)
+ 4ab

∂a

∂y1

∂b

∂y1

− 3abµ
y1

ρ
A− a2b2µ

y2
2

ρ3
+ a2b2µ2 y1

ρ2

]
2 e−2µρ

×
[
θ(r2 − ρ̃2) + θ(ρ̃2 − r2) e−λ1ρ̃ +δ(±kx1 + b− x2) e−λ2ρ̃

]
. (16)

Here A = b∂a/∂y1+a∂b/∂y1. Expression (16) was obtained with allowance for ∂ρ/∂y1 = y1/ρ and ∂2ρ/∂y2
1 = y2

2/ρ
3.

Using the expression for the metric tensor of a medium with defects (10) and the concept of crack propagation
along a geodesic, we write Eq. (4) in the form

dyi
ds
− γihk(x, x′)x′hx′k = 0. (17)

Here s is the Finsler arc-length parameter, the vectors x′i = ẋi(dt/ds) and yi are related by (7), and γihk(x, x′) are
the Christoffel symbols of the first kind, determined in the same manner as in the Riemannian geometry.

Equation (17) gives physical substantiation of the fractal character of crack propagation. Determining the
fractal dimension of a crack as the ratio of the trajectory length in a real crystal to the trajectory length in an ideal
crystal (i.e., the ratio of the trajectory lengths in the Finsler and Riemanian spaces), for identical parametrization
of the curves, we obtain

D =
dl

dlr
=

√
gis

dxi

dt

dxs

dt

/√
gris

dxi(r)

dt

dxs(r)

dt
=

√
gis dxi dxs√

g
(r)
is dxi(r) dxs(r)

. (18)

Since the symmetric connectivity coefficients are functions of state, the fractal dimension of a crack is also a function
of state.

Conclusions. Using the geometry of the Finsler space to describe deformation of bodies with a defect
structure, one obtains a physically substantiated basis for analysis of the interaction between the geometric structure
of an ideal material and the geometric structure of a system of defects without involving any additional assumptions.
From the viewpoint of delaminated manifolds generated by the Finsler metric, horizontal delamination corresponds
to an ideal continuum and vertical delamination to defects of various types.

The existence of the vertical components of the manifold allows one to reveal the physical reasons for the
fractal character of crack propagation. In accordance with experimental data and numerical models, the fractal
dimension of fracture [see Eq. (18)] depends on both the properties of real crystals and failure conditions.

For modes of prescribed failure (where the material should fail in a given region and, if possible, along a
specified trajectory), the trajectory of crack propagation is determined by Eq. (17). In this case, one can obtain the
desired characteristics of the crack trajectory by specifying the defect distribution and controlling this distribution
by technological means. In the process, the dislocation-distribution function is a free parameter which has no effect
on surface fractality but affects the mechanical parameters of the material (for example, Lamé parameters).
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